/ NASA CR71027

PACILITY FORM 802

uccssﬁPAGESD )¢ {CODE)
o 7/027 _20

(NASA CR OR TMX OR AD NUMBER)

Accession No. 53488-54 .

Copy No. 51 SID 64-29

ORBITAL TRANSFER BY OPTIMUM
THRUST DIRECTION AND DURATION

12 February 1964

Prepared by
Stephen A. Jurovics

SPACE SCIENCES LABORATORY

Approved by

e Sost~

E.R. van Driest
Director

Hard copy (HC)
Microfichg (MF)

"853 July o5

NORTH AMERICAN AVIATION, INC.
SPACE and INFORMATION SYSTEMS DIVISION




FOREWORD

The work presented in this report is an extension
of the transfer studies made for the Marshall Space
Flight Center, and was supported by MSFC under
Contract NAS8-5211 (Satellite Rendezvous Study).
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ABSTRACT , ¢
20]RAY
A three dimensional derivation is presented of the
equations and boundary conditions necessary to deter-
mine the minimum fuel orbit transfer path by optimizing
the thrust direction and duration. The formulation,
known as the Mayer problem in the calculus of variations,
yields a two point boundary value problem. A Newton-
Raphson method was used to attempt convergence of this
two point boundary value problem, but it was found to
be inadequate. However, with the final orbit unspecified
numerous solutions satisfying the Mayer formulation
were generated and then compared with the optimum
two-impulse transfer between the same two orbits.
This comparison is quite revealing; it shows first,
that for the restricted class of orbits examined the
optimum two-impulse estimate of velocity increment,
or fuel required is very good. Second, it demonstrates
that although the optimum departure and arrival points
obtained from the impulsive and finite thrust solutions
may be quite different, the penalty in using the former

for design estimates may be quite minor. '%/
Al
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INTRODUCTION

In this report we are concerned with the problem of moving a vehicle
between two arbitrary orbits in space. The orbits are assumed to have one
planet as a common focus which generates a uniform central gravitational
fieid, and the vehicle is assumed to be capable of thrust direction and on-off
countrui. We preseni a complete derivation, in three dimensions, of the
equations and boundary conditions necessary to determine the minimum-fuel
orbit transfer path by optimizing the thrust direction and duration, and the
departure and arrival points on the initial and final orbits. The Mayer
formulation of the calculus of variations is used.

We turn to optimization procedures for finding the transfer path for
three reasons: First, the problem of realistic minimum fuel requirements
for space maneuvers is one of extrerne importance. Second, for the
purposes of design studies based on impulsive transfer, it is necessary to
know the error made by the assumption of impulses. Third, the optimiza-
tion technique gives an organized and general way for finding a transfer
path; it is a procedure that is of significance no matter what quantity is to
be extremized, since it provides a suitable steering program to accomplish
. the desired mission.

Selection of the optimization technique is primarily decided by what
has been reported in the literature, and the experience of the investigator.
Either the indirect method-use of Lagrange multipliers-or the direct
method-steepest descent-can be used. Reference (2) reports a successful
application of the Mayer formulation to the problem of boosting the
maximum payload into orbit with a high thrust engine. Reference (3) also
uses the same method successfully on the problem of coplanar orbital
transfer with very low thrust engines. Both applications utilized the
Newton-Raphson method as the principal iterative technique for solving
the two-point boundary value problem. These reports were the main
factors in this selection and in the initial approach to the two-point boundary
value problem used in this study.
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I. EQUATIONS OF MOTION*

The kinetic energy per unit mass is:

P =1/2 (i’z + rzéz + rzcosze éz); see Fig. 1.

The potential energy per unit mass is:

- -u I .
= b =
v T Ly B Mearth)

The Lagrangian, L = P - V:
.2 . 2 .
L=1/2 (r + rZBZ + rz cos 9¢2) +%

The three second-order equations of motion are obtained from:

d @ 2 .
dt aqi - qi - Qi, 1 = 1"3,

where the q; are r, 8, and ¢. The Q; are the generalized force and
moments due to the thrust, T:

Q =—,¥- cos Y cos v
r m
T .
Qe-rrrsmq;
Q ‘lrcos sin v cus O
¢ m W v

Thus, the three second-order equations of motion are:

T - réz - rcosZ(){bZ y & =—T cos y cos v (1)
2 m
r .
d A6 2: 2 2 T :
—_— i = — i 2
cit(r 8) + r cos O sin B¢ mrsmq; (2)

*See also references 4-6.
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d 6 2 2, . T .
at (r cos 9¢)——;’ r cos  sin v cos 0 (3)

We want the thrust, T, to be either on or off. Hence, we define T = ¢ 3,
where ¢ = an effective exhaust velocity, and p = mass flow rate.

Check dimensions: [T] = F = &; léﬁ”:& . M
TZ T T

Expanding {2) and (3), and noting that we cannot have 6 = % = we get the

> 9
&

following seven first-order equations of motion, where new variables p, x,
y are defined as indicated:

W, = r-p=0 (4)
w,=26-x=0 (5)
Wiz $-y= 0 {6)
w _-;p-rxz-rcoszay2+-&-C—Ecosq;cosv:() (7)
4 2 m
. r
w 5:‘:+iu +cosesineyz-—cﬁsin¢=0 (8)
5 r mr
. 2py cp cos ¢ sin v
= - . - =0
w, =y -2tan8 xy + —2 ————— (9)
J wo = m+a=0 (10)
% The optimum path (for min. fuel expenditure) that is to be found must
satisfy the equations of motion, and this is represented by constraints,

Wl = O,i= 1‘7.

There is one further constraint to be added: We require the thrust to
be on or off--no throttling. This is expressed by:

WBEB(B-ﬁ ) =0

max.

SID 64-29




Hence, problem variables are:

Dependent Independent
Dynamic and kinematic Control
r P ¢ t
) x v
¢ y p
m
Denoting all dependent variabies by z, the constraints can be expressed as:

Wi -f(z)=0 i=1-8 j=1-10

SID 64-29
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1I. DERIVATION OF OPTIMIZATION PROBLEM *

A. Since the quantity that we want to minimize only enters in the
boundary conditions (we use the Mayer formulation of the calculus of
variations), let us first obtain the Euler-Lagrange equations associated with
the control variables ¢, v, B.

,,,,,,,

F = Xi (t) w, (zi, zj)
Require:
d 9F ?F
q 9z, "8z, S0 HZ VWP
i i
I\ w, - ow,
a.F = 0 c.o = k.—l =
0z dz, j 9z,
i i i

1.) z = v

)«4(%% cos ¢ sin v) ‘+ )\6(— cP cos  cos v)= 0

mr cos 0

. ' <B (K cos Y sinv - \ Losycosy Vl: 0
. m 4

6 r cos 0

If3 = 0, then T = 0 and ¢ and v have no meaning, and we simply compute
the X\ ;(t) by a closed-form solution which is given in Appendix A. For
B =0, and c and m = 0 for all t:

X6c05v
cos¢[k4smv- rcosG]zo
1N
'Eil:herx{;::tl ortanv=————6"—— (11)
* 2"’ X4rcos9
x6 k4rcose
Ssinv = JTpT ., cosv =T (12), (13)
v v

*See also references (7)-(9).
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where

2 2 2 2
Dv--\/)\6 +x4 r cos O

Note: From equations (7) and (9), thatif y = #* w /2, the v terms drop out,
as expected on physical grounds.

2.) z = ¢
b ‘—E— ain & coe ‘ + N l- Cﬁ co .I.I + ) [cp sin q‘ sin VI_
4 | m in g cos v 5 mr"s"'l 6l mrcose | .
1f B = 0, then the argument is the same as above. For g = 0:
1N sin v
sin rk4cos v +-E-a——]- Xscosup =
Insert {12) and (13) for sin v and cos v, and collect terms:
£ D
N v
sin <os ol - Xscosq; =
by
_S_i_ll_\k = tan ll) - -__5_::8—9 (14)
cos ¢y B D

3.) z =8

- ¢ cos  sin v]

-cC -c .
)\4{-——m cosq,:cosvl +)\5l;-n-; smup] +x6l =T cos ©

+x7(1)+x8[(p- pmax)+,3] =0 (15)

This equation yields \ g, but it is of no significance in this problem.
B. To reconcile the sign ambiguities in 1.) and 2.), above, and to

determine when g = 0, B = pmax , we turn to the Weierstrass necessary
condition. ’

SID 64-29
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This condition states that for a minimum, E 2 0:

_ * <% . o . 3 F
E—F(Zi,Zi)-F(Zi,Zi)- 21; (Zi ’Zi)azi

*
Z; differs from Z, by a finite, but admissible amount.

The only variables which admit of such strong variation are v, i, and
B, where, for example:

».p:q;orq;-i-w;v:voru+w;ﬁ=00rﬁmax

Now, the third term in E is identically zero since there are no constraints
involving 4;, v, ;3.

% o 3% 4 . P
LOE SN w (20, 20 - 0w (2, 2 2 0§ i=1-8

- %X * .
=\ () [zi - (2 | - N () [zi - £ (zj)]
*
E = a5 (2) -\ 0620 > 0

or

&
Ki(t) £ (Zj) > Xi(t) £ (Zj ) (16)

Applying (16) we get:

cf cf . cp cos ¢ sin v
1N -r-n-cosq,cosV' +)“Sm 5““4‘] +)\6[ mr cos © ]

4

P
1 * *
k4f£-cosq; cosv]

th, (B + N (-Blp - >

maxl)

‘5*
c
+ )\S[mr

* * *

L % cB cosy sinv *

s1n¢l +)\6[ ————% l+)\7(-ﬁ)
\ * %

trg |- 87 -8 0]

Note, first, that the \ 8 term= (.,

SID 64-29
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Now, factoring out a 3 and ,5* yields, in the notation of ref. (8):

* X
Bk-B k 3> 0

where
c A\ Xbcos:.psinv
k:«-(h os — pin Y + )-
m 4c p cos v + r v r cos © X?
Fork =k* 8 =8%; (g -8% > o

Ifk > 0, thend > B¥*=>8

B (17a)

max

Ifk < 0, then 8 < ;3*::;3 0 (17b)
Thus, we have the engine on-off criteria.

For B = {3*, k aek*;

N Kbcosq;sinv %
l4cos¢cosv +—;—sm¢+ = cos 6 > X4cos¢ cos v
*
)LS . *+)\6cosq; ‘ * 1)
+ T sin T cos 6 sin v

* * %
a.) y =y¢;vev =Dv=z=vorv+un(=v)
Hence, (18) becomes

A, cos { sin v

6
x4cos¢c05v+ T cos 6 > 0
Using (12) and (13):
Xi rZ cosze + XZ
cos 2 0

2D rcos 6
v

SID 64-29
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or,

=D
cos q;[——l'—] 2 0

r cos 6

Sincer > 0, and;z-lr- < 0 <% , the above yields

+D,cosy > 0]

!

o~
-
N
'

Physically, we will most probably be confined to

Ail mw
> < ¥ <—2—$+DV.

b.) v=v*;¢=¢*=>¢=¢or\p+w(=¢*)

From (14) and (19):

Kscos 0
tany =—3p
v
kscosa tDv
sin ¢ =—:"I‘)_"", cos y = =D (20)
Y ¥

where

2 2 2
le -JDV + )sscos o

From (18) again:

A _ sin X6cos¢sinv

K4cos¢cosv+ n + T cos 6 2 0

SID 64-29



Substituting (12), (13), and (20) and clearing yields:

th)
nm—————
rcos 6 0
Again, since r cos 8 > 0, this requires + Dq‘ {21)
C. There is a first integral, since the Lagrangian, F, does not
involve time explicitly.
O F 9 )\i(t) w, (zi, zj) )
0z, k=@ 3 % 2 = C
k k
3 (z, - £ (z.)
1N (t) . z = C
i 2 z k
Hence,
)\lr+)\26+x3¢+\4p+\5x+)\6y+)\7m=0 (22)
D. Boundary Conditions

The boundary conditions to be applied come from two sources: Those
implied by the physics of the problem, and the remainder from the
transversality condition

T

oF . oF _
dG + (F - Y zk) dt +—8i dzk = 0, (23)
k k 0

where G is the function to be minimized.

1.) To clarify the derivation of the boundary conditions, let us first
consider that the two orbits are coplanar. We reiterate the problem: Find
the minimum fuel path to transfer between two coplanar orbits by optimizing
the thrust direction (v) and duration ("'Bang-bang'' control). The departure
and arrival points on the initial and final orbits are not specified, but the
total time of transfer is specified. The geometry is shown in Figure 2.

- 11 -
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INITIAL ORBIT

TRANSFER
ORBIT

FIG. 2. TRANSFER GEOMETRY
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Thus, we have a system of 10 first-order differential equations for
the variables:

\
r, ¢, p, ¥, m, )\l:)\Bs 4’ )\63 )\7

This system thus requires 10 boundary conditions. The seven specified by the
physics of the problem are: (i = initial, f = final).

P, (or hi)’ e, (or Ei)’ w,, m,

_{orh.), e.{lorE), o (24)
‘1 1 b 1

f

P, €, ware semi-latus rectum, eccentricity, and argument of perigee,
respectively. h and E are angular momentum and total energy.

We derive the three remaining conditions from Equation (23) and thus
we are obliged finally to select the quantity to be optimized. Since we wish
to compare our results with minimum impulsive orbital transfer, let us
consider minimizing the characteristic velocity,

m,

G=C1nf-!—n'}—
f

Equation (23) becomes, utilizing (22);

- C C
{mf +X7]dmf+[}—n—i-—)\7] dmi+[-Cdt+xldr

+ A, de + L, dp + 1\ dy'T=0 (25)
3 6 0

4

Since m; is specified, dm; = 0. Also, dt] g = 0, which implies C =

unknown. Thus,

A, =— att =T (26)
This is our eighth boundary condition. The remaining two come from

A,dr + A\ dé+ X\, dp + \ dyT=O, (27)
1 3 6 0

4

-13 -
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where we use orbit equations to relate the differentials in terms of the given
parameters p, e, and w. To do this we note:

_ P =
T T +ecos (¢ - w) = g (28)
dr = f'(¢) de
E/m = 1/?.(%‘2 + r‘?‘q‘sz) - (29)

d(E/m) = rdr + éz rdr + rzédq') +—%dr =0
r

h/fm = r ¢ (30)

d(h/m) = 2r ¢dr + rzdé = 0

Expressing all the differentials in terms of d¢, the two boundary conditions
then are

A 2x , ¢
' 4 2, & - .
f(¢)[)~l-i_ (- o +r2)- - ]+x3-o,att_o,'r.

These two equations can be put in a more revealing form. Substituting p and
y from the equations of motion, we find

. . . . B {)\6smv

+ y\, =

= T
6 - +X4cos v],att o,

Utilizing Equation 17 from p. 9, withy = 0O and A ¢ = 0, we see that the
right side of the above equation is

Bk + ﬁ)\,?, or
A
r\ +¢x3+5x +yA

] +ri—;x7 =Bkatt = 0, T (31)

4 6

This thus identifies the constant, C (Equation(22))as equal to Bk at the
end points.

Further, if C = 0 at t = 0, (31) implies that k(0) = k(T).

- 14 -
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2.) We can now proceed to derive, rather succintly, the boundary
conditions for the three dimensional case. The problem requires fourteen
boundary conditions since there are fourteen first order differential
conditions for the variables:

r:e 1 ¢ » P i 4 x’. Y' ml kl) Kz' K3: X4' XS’ X6’ k-’o

The physics of the problem now yields eleven conditions while the trans-
versality (Equation (23)) yields three, exactly as in the planar case. The
additional four puys;cal constraints are that the vehicle's position and

spe.‘:‘..fzed 1310--:‘ ana £final nlanes

- +ha
- - kb AN tl e Sl r W @

We list the fourteen conditions in terms of their origin:

(a) From the final point (t = T), there are five: By choosing the final
plane to have zero inclination the two additional constraints at the final point
are simply 6(T) = 0 and é(T) = 0, The other three are Equations (28),

(29) and (30) applied to the final point,

(b) From the initial point (t = 0), there are six: One of the six is the
specification of initial mass, while five are orbit equations. The initial
orbital plane is taken to have an inclination i and to have its ascending node
on the x) axis as in Figure 2. The departure point angle called ¢; in
Figure 2 is replaced so that ¢ represents the angle in the x), x; plane as
in Figure 1. The five orbital equations may be taken as: Equations (28},

(29), (30),
sin ¢=tan 6 cot i, (33)
and
2
yr2 cos 0 = % cos i. (34)

(c) From the transversality condition, there are three:

7\7=-crﬁatt=T (35)
is obtained exactly as before, The remaining two equations are:
[XIerrdee+k3d¢+k4dp+’~5dx+ 7\(,dy]tzo=o (36)
and
{Mdr+ Nydg + Mg dp +\6ay] t=T.yp (37)
- 15 -
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In addition it should be pointed out that just as in the planar case
Equation (36) and Equation (37) are equivalent to

B(0) k (0) = C (38)
B(T) k (T) = C | (39)

Finally, for use in computation it must be indicated that equation (36)
along with the total differentials of the five orbit equations (28, 29, 30, 33,
and 34) constitute a set of six homogenous equations, the determinant of
whose coefficients is the required relationship. This is the generalization

Equation (31) for the initial point. For the final point the generalization is
the same as in the planar problem.

0
=N

E. Corner Conditions

The points at which the thrust goes on or off give rise to dis-
continuities in the z). The mathematical criterion needed to join
different positions of the extremal arc is supplied by the Erdmann-
Weierstrass corner condition:

3z 19z
k k .

or
(xk) =<xk) , k= 1-7 (40)
- +
-F+88Fik = -F+aa£F ’zk
Zx - k +
or,
C = c+ (41)

We observe that any of the seven conditions which comprise (40) would
not apply if the value of the physical variable were specified at the dis-
continuity. Similarly, (41) would not apply if the time of the discontinuity
were specified.

F. Euler-Lagrange Equations

Here we write down the differential equations for the Lagrange
multipliers, which come from the Euler necessary condition in the calculus
of variations:

- 16 -
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d oF oF
—[az ]- =0, 2 =1,0, ¢ p, X, y, m (42)
F:h,w,z)\_t[i,-f.z)l

J J” J J(I

" a . of.
at (X.(t) 5jk.) =M oz, (z,)

Y

- —
N = - xj bay (z!) (43)

Using equations (4) - (10), equation {43) yields:

N .
¢ 2 2 2 2p 5 chingl
A= -y [x +y'cos” 0 +—£] - ZIpr- —
r
k6 cpB cos ¢ sin v
T2 {Zpy- m cos 8 I (44)
r
A. = - A (- 2ry’cos © sin 8) + A_y’cos 2 8
27 T Mgl eryc n 5Y
2 cP .
- X leysec @ + — cos ¢ sin v tan 0 sec 6 (45)
6 mr
x3=o (46)
2\_x 2\, y
. 5 6
A = -
4 xl+ - + = (47)
ZXSp
= - AL - -
\5 2 erk4+ Z)\6ytan6 (48)
- 17 -
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N, = -\, - 2ry A

6 3

2 ) p
4 €O° 0 + szycosesme - 2)\6 [xtane--r-] (49)

cA_siny c A\, cos y sin v
X7=-r%[é)\4cos¢COSV+ > + 6 ] (50)

mr mr cos O

or,

i7 =.§. [k+ N

from Section [I-B-1.

- 18 -
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111, ITERATIVE METHOD

The equations (4) - (10) and (44) - (50), plus the control equations for
the switching function, k, and the steering angles, y and v, are a set of
differential and algebraic equations whose boundary values att = 0 and
t = T must meet the specified conditions at those two points. We are thus
faced with the well-known two-point boundary value problem. The Newton-
Raphson method, and a "Matrix Modification' technique were selected as
the first iterative techniques to attempt convergence of the two-point
boundary value problem. Both d‘xcae Tethuds are fully explained ia

_________

121\ e | -
TOICTCLIT &y, anal OLis

’ <
~L al.s o - L v _uy S sx-411
of this method on this proviem il

e o~ tha AmmsrA A~ ~rha st
ion of the COnVCTgencT caarach

4
e given here.

The iterative techniques have so far been only applied to the coplanar
case because it was felt that until a fast and reliable method was available
for that problem it was rather hopeless to tackle the three-dimensional
case, Reference (3) reported success with this technique for low-thrust
engines, but in this case when the thrust-to-weight ratio (T/ W) is between
one and ten, it does not seem to be able to handle the problem. One
comment about a T/W of ten is in order; the iterative procedure begins
by first obtaining the optimum two-impulse transfer. We then have the
optimnum departure and arrival points, velocity increment necessary, time
for the transfer, and initial and final thrust direction. Hence, if we
assume an engine with a T/W = 10, we have almost an impulsive vehicle,
and if the final time is set equal to the impulsive time for transfer plus
the time necessary to burn fuel yielding a velocity increment equal to or
slightly greater than the impulsive solution, we can expect that the
finite-thrust solution will be very close to the impulsive solution in all
respects. Once this one has been obtained, we can then proceed to
decrease the T/W to 8, 6, 4, etc., obtaining solutions for all these, until
we are down to precisely the engine in which we are interested.

Now, the Newton-Raphson method applied to the coplanar problem
has the behavior of converging on the transversality condition first,
equation (31), and then keeping that satisfied, move very slowly towards
meeting the orbit conditions, p, e, and w. The conclusion, so far, is
that the method is inadequate for this complex and sensitive problem.
However, several modifications of the method, and its use, are being
studied, and it may yet prove capable. If not, other iterative methods for
handling the two-point boundary value problem are being studied, and will
be tried if the Newton-Raphson proves conclusively unsatisfactory.

-19 -
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NUMERICAL RESULTS

In the introduction to this paper, three reasons for turning to optimi-
zation procedures for the solution of the minimum fuel orbital transfer
problem were given. This section gives an indication of the answer to the
second statement; i.e., the comparison with two-impulse orbital transfer.
The answer is not conciusive since the switching function time history was
restricted to one coast'period, and the second burn period was terminated
as soon as

k (t) =k (0) ; see equation (31).

Thus, a rather restricted class of initial and final orbits was considered;
all orbit pairs intersected, and in most cases the intersection was quite
shallow,

The following table presents some of the results gathered from this
restricted comparison. The first column is the thrust-to-weight ratio at
the initial orbit; for example, a vehicle of 1000 slugs mass, with fuel-flow
rate, B, of 1 slug/sec., has a specific impulse of 300 sec. if the
(T/W); = . 7118, at a distance of 6058 miles from the center of the earth.
In the second column, the percentage difference in velocity increment is
given; VF = ¢ In IZi | and Vy is equal to the total velocity incremerit

mr

from the two-impulse minimization. Total Aé, in the third column was
computed as follows:

Total Ad = “i:r-‘ml + l‘f'F S$s

Thus it represents the total deviation in the departure and arrival points
between this finite thrust solution—subscript F—and the impulsive solution—
subscript I. The last column gives an approximation to the penalty in
velocity increment, or fuel, if the departure and arrival point of the
impulsive solution is used instead of the points specified by the finite thrust
solution. This estimate was obtained in the following way: Reference (1)
presents contour maps of minimum transfer velocity on a ¢i’ ‘f plot. By
differencing the value at (¢4, ], ®£,1) with the value at (é;, 7. ¥ F), and
dividing by V], we obtain an estimate of the penalty in velocity, or fuel, that
would be incurred. We emphasize that this is an approximation; but in view
of the results in the second column, it is probably a reasonable one.
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Finite Thrust Versus Two Impulse Comparison

(T/W); (_V_F_‘;'_I_Y_I_’_ 102 Total A¢, deg. % 102 Penalty
10 .086 20,0 .135
10 .136 .26.3 ~ .410
8 .203 21.1 352
8 .236 27.9 . 401
6 .143 18.7 .365 -
6 .501 29.8 . 685
4 .278 34.4 .874
4 .354 32.2 | .247
2 .224 24.8 .611
2 .293 28.7 . 631
7118 .095 ' 72.8 1.89
.7118 .194 13.0 .407

We observe from the first and second columns, that if orbit transfers
with realistic vehicles are restricted to be completed in one orbit, then the
time constraint—obtained from the impulsive solution—placed upon these
finite thrust solutions is also realistic, and, ipso facto, the fuel requirement
for the transfer obtained from the two-impulse solution is a very good
estimate of that which would actually be needed. This is, of course, with
the assumption that the finite thrust transfer vehicle departs and arrives at
the proper point, for we see that the discrepancies in¢; and ¢ ¢ can be quite
sizable. However, from the fourth column, we note that the penalty in fuel,
or velocity, for using the optimum ¢;, é¢ from the impulsive solution rather
than those specified by the finite thrust solution may be quite minor; however,
this was a rather restricted comparison, and a good deal more numerical
results are necessary before any even tentative generalizations in this
direction are possible. '

-21 -
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CONCLUDING REMARKS

The Mayer formulation of the calculus of variations has been used to
derive, in three dimensions, the equations and boundary conditions necessary
to determine the minimum fuel orbit transfer path by optimizing the thrust
direction and duration, and the departure and arrival points on the initial
and final orbits. The closed-form solution to the Euler-Lagrange equations,
which apply along the coast arc has also been derived, rather explicitly, and
has been verified by some of the numerical integrations indicated in the
preceding section.

The numerical results section is considerably leaner than desireds.
One conclusion, therefore, is that the multivariable Newton-Raphson
iteration technique is inadequate for this complex and sensitive problem.
This is a useful, albeit frustrating result, A more gratifying result is the
favorable comparison of two-impulse and finite thrust orbit transfer
solutions. Restrictive as it is, it should be of interest to design personnel,
for it is the first proven indication, to this writer's knowledge, of the real
utility of the impulsive solution and how much a design based on it differs
from the optimum.

It is hoped, and rather optimistically felt, that one of the iteration
techniques currently under study for solving the two-point boundary value
problem will be effective in this endeavor. With this accomplished, an
unrestricted variety of problems with an equally unrestricted genus of
propulsion systems will be able to be expediently solved. The two-impulse
solution is obviously not universally a good estimate for design, or even
applicable. When low-thrust ion or nuclear propulsion systems are being
considered, and interplanetary transfers are being studied, it will be
distinctly advantageous, if not imperative, that the capability begun herein
be a reality. ‘
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APPENDIX A

SOLUTION TO EULER-LAGRANGE EQUATIONS DURING COAST

With the thrust off (8 = 0), the equations of motion are

22 . \
rp’ - £ (A1)
r

L 11
i

1‘$ = =2 rqb ) (AZ)
for coplanar orbits. The solution to these involves four arbitrary constants;
Pcs» ©cr W - the elements of the coast orbit - and ¢., the angle at which the

coast is begun.

The Euler-Lagrange equations are:

] 2\ (9
X4 = -\ 1 + < (A3)
AN 6i
x6.~.-x3-2x4r¢+ (Ad4)
A =-—1—[c-x¢-x F-a 5,6] (AS5)
1 T 3 4 6
N 7 = 0; X 7 = N 2 at beginning ‘
of coast _ (A6)
First, change the independent variable from t to ¢:
o 2 9
A 4 ¢ = -\ 1 + T (A7)
- 2r |
- o - £r A
X6¢ )\3 2r¢)\4+r)\6 (A8)
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Putting (A5) in (A7), and collecting terms, yields

PR . . 21réd -
x4¢r-x4r-x3¢+c-x6(—;2+¢) =0 (A9)

The solution to (Al) and (A2) is given by

2

re¢ =h =~/upc
o)
*c

r —

1+ e cos(¢—wc)

We find r by
2 he
f:—f—-&e sin{¢ - w ) = csin(cp-w)
P, c c’ 7 P, c

From (A2), 2—:2-4- ¢ = 0; thus (A9) becomes

At A
‘ 4 3 C '

Defining true anomaly as 8 = ¢ - Ww., and using 6 as the independent
variable, we get upon substituting the equations of motion solution:

dX A, P 3
4\ cotg = 3 Cp (A11)*

de 4 hesin g h‘?'etsine[l+e<:osx£)]2

where the subscript ¢ is now omitted.

Substituting the orbit solution in equation (A8) we get

2
dx A, 2esin@ -\. P 2p\, (0)
6 26 ) 3 - 4 (A12)
de l + ecos 9

h{1 + e cos 6]2 l+ecos®

*

We note the singularity in this equation at 8 = 0, w, and that the limit
approaches * won opposite sides of the singularity; the handling of this is
discussed below.
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We obtain the solution to (All) first. The homogeneous equation is

dx4
f = fcotede

r 4
)\4 = Kl sin © {Al13)
Applying variation of constants, we insert {A13) inte (Al1), letting K; =
Kl {e).
C C
Kl (0) = —3— - 2
sin" @ sin 6 [l + e cos 8]
A.Pp 3
where C. = 3 , C, = Lp
1 he 2 2
h™ e
K,(6) = -C, cot8+C, -C, f (A14)

gin” e[l+ec039]

Lettingu = [l + e cos B]-Z, dv = cscZ 6do, we get

cos 8do

-2
fudv = -cot8 1+ ecos 6] +2ef 3
[1+ecos8]

Using ref. (10), we find

2 cos 9d@ e sin @ [-2e+cosB]de
'ef 3 z 2*[ 2
[1 + e cos 8] (1-e) |1 +ecos®) {1 + e cos 8]

Multiple use of #317 and #309 in ref. (10) yields

f de 1 -e 8in 6 2 -lxll—e tan%
2
{1 + e cos 0) (l—ez) 1+ecos® 'J - Z 1+e

where - <8 <mand 0 < e <1 - elliptical transfer orbits only.
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Again, using #315 and #309 we obtain

f cos 6d 6

(1 + e cos 6)

Collecting terms we get:

d 0

-2
3 = -cot8[1l + e cos 6]
sin 9 {1 +e cos 6]

+ e sin 6 2 e - e 8in 0
(a _ez) (1+e cos 9)2 a -eZ) 1 +ecos 6
2 -1 l1-e tanl1/2 6 1 sin 0
+;71-eitan l + e +l_e2(l+ecose

L+C

2 e -1 vl-eztanljze
- tan + C
Jl-ei 1 + e 4

-2
Kl (6) = -Cl cot O + C3 - CZ (-cot 0 [1+ecos 6]
+ e > sin 0 2+ Zslne [Zez+1]
1 -e (1- + e cos 0) (1 -e)(1 +ecos 6)
6e -1
- 2.3/2 tan (ARG)] +C4)
(1-e)

Defining the constant 03 - C2 (:4 S Rl’ we have:
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- . . -Z
A (8 = -C cos 6+ K1 sin @ - C, sin 6 (-cote[l + e cos 0]
. . 2
e sin @ sin@0(2e +1)
* 2 z * z
1-e {1 + e cos 0) {l -e )(1 +ecos 8)
6e -1
- ——57 tan (ARG)]) (A15)
(1-e)
where
ARG = 1 -e tan 06/2

1+e

K. . N - = . isfied.
and 1 i8 determined such that 4 (¢C wc) X4 (69) is satisfied
Turning now to equation (Al2), we have for the homogeneous solution:

-2
ké = Kz(l+ecose)

Using the form (Al4) for Kl {(0) in the equation for A4 (8), substituting the
homogeneous solution for Ag (6), above, into (A12) and considering that
K; = K; (8), yields the differential equation for K, (8):

! - 1 - -
KZ(G)[1+ecose] 2=~--Cl[1+ecose] Z-Zp[l+ecose] 1

AP
1
de . ;c-‘-23

1 h

~-C. cos 8+ C_sinB - C_ sin 0
1 3 2 [sin29[1+ecose]z

Thus,

1 '
KZ(Q):-C1 - 2p[1+ecos 8] [-Clcose+c3sin9

-Czsinef > d® 2]
sin” 81 + e cos 8]

-27 -
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=

f[—Cl-Zp[l?ecos 0] (-C cos 0 + C3_3sin6)] de

1
e C e C
=4‘!p(Cl sin6+C3cose+—'Z—lsin6cos B-—?isinzﬁ)i-cs {Al16)
Finally, we need:
_ d 8 \
2pC sin 6 [1 + e cos 0] de (A17)
2 .2 2 :
sin” 8[1 + e cos 6]
Let:
u = d 9 ; dv = sin@[l1 +ecos 8] 48
sin29[1+ecose]z e 2
v =-cose+—z-sin9

[-cos @ +e/2 sin’ 8]

uv - f ) de
sin_ 81 + e cos 6]

f udv
f udv

For the first integral let

av + [ cos 86d 6 [
sinze[1+ecose]2 Z [1 +ecosG]

y =ecos 6
dy = -esin 6d 6
e J.2 2
/‘ 2.y sinp- = Y
e e
y
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f cos 8d 6 - e f ydy
sin‘ze[lﬁ-ecosf)]z [1+y]2 2_y2)3/2
Now, let '
z =1+y,;
yZ = zz-Zz+1
Then
f cos 6d 6 - . e (z -1)d =
sin® @ [1 + e cos 0] - 2 ,3]2
where
Z=-2"+22 +e2-1,
Z2 =1+ecos®
‘Using reference (10), #190 and #197:
cos 6d 6 d z

2 - "¢ Zs/z*efz 3/2

sin’ 01 +e cos 8]

= — =1 _ L1223 - [ e —2—
(ez_l) Zl/l z eZ_l> zZl/Z (eZ_l)

1
+3f 3/2( > ) + C, (A18)
e -1
where
d z _ 1 sin-l (z+(e2-l))
2 212 ;1-e2 | ze
and

jdz 2z -1
Z3/2 eZZl/ZJ
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Thus, from previous results in )\4(6) and collecting the above, we find:

X,(8) = (Al6) + 2pC, (uv+ (A18) - = . .le"‘) [l'fesi;‘seé-
+Tl=-2__e=itan-l l-le+t:.n /2 i C7]> (A19)
where u and v are defined below equation (.Al'l)_.‘
Collecting terms, we get:
e C

sinB® cos ©

—Z -— .
xb(e)- [1 +ecos 8] {KZ+zp(c1 sme+C3coaG+ 3

e C
2

+ e 1 1+l+ 3 d z 1+ 3
(ez-l) lez z ez-l zZl/2 ez-l
+3j‘dz (1+ 1 - -e (- e sin ©

z3/?_ ez-l Zu_ez) 1 +ecos 0

2 -1
+ —‘7——===ta ARG
1 - ez i ( )))]

We note that the constants C3 and C4 appear explicitly in (A20). To
eliminate this, we consider all terms containing them, namely:

eC3 2 e 2
Zp(C3cosG- ;  sin 6)+ZpCZC4(-cose+-z-am 8)

+ 3sin29)+ZpCZ ([L+C4] [-cose+-§-sin29]

(A20)

2
= C3(chose-pesinze)-CZC4(2pcos 6 -pesin 86)

= I-(-l p(2cos 8-e si.nZ 8),

where -I-(-l is the constant we determine from the initial conditions on X4 (8).
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+2pCl sin6(1+3—c-?£—9-)

2

A (8) = {1+ ecos 0] -2 [RZ

— 2
+ Klp(?.cose-esin 9)+ZpCZ L(-cos th‘-';—sin2 9)

(A21)

‘/ 2
+ 2 tan‘l 1 -e tan 6/2 ))
J 1 _ez l+e

We note that equation (Al1) has a singularityat 8 = Qor v (¢ = w _ or
9 = w, + w). 1f it is necessary to evaluate A\, across either of these points,
‘we have, from the first integral (A5), a solution.

¢ = —B—
lzxe
lim r=0
¢ - p %(lie)z
P

—Ww + 7
¢ C

6
i
o

. *euilte)z
r =

2
| P

where the upper sign is used for ¢ — we (6 = 0), and the lower for
¢-wc+w(9= ).

We thus find, from (A5):
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lim A= C -k3;
§—0 4777
0 —w
lvim 2
- C A3h
=0 ) _ P (A22)

4—ep(1 +e)z- en

We can derive (A22) in a different, and more fruitful manner. Rewrite

equation (All) as:
; R 3 h |
| 1 A3P Cp

d@ ~ sin# [*4 cosf * e - hZe [1 + e cosd] 2]

Since we require continuity of the multipliers, the bracketed quantity must
approach zero just as sin@ does as § —0. Solving, then, forAg4at =0,

gives:
N CPZ 13h
4 ep(l+e)d ep

Thus, we know that

lim
9—0 a0
g—«w de 0

We can thus use L'Hospital's Ruleand derive two approximate
differential equations for A4 (#). In the neighborhood of § = 0,

dA 2
4 2Cp 0

—.——:-x -
49 p(l +e)

daé

In the neighborhood of § =,

dAg _ ce) - 2CP%(0-#)
T A Y SRt

Solving these two equations, we obtain:

___2cp? 92
x4(0)--—;(1—f’;33-+ K3 exp (——Z—>
~0 .
- -2Cp2 (0 - =
A4 (9) = ”flfe)3')+x4exp (-gl-g--c])
0 ~w ,
- 32 -
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We can similarly approximate (Al2), and obtain

2
. 0% \|yx [T+e l A 3p 4Cp3 ]
"6(')'°xp(1+e)[ zerfm( e I ha+er ‘w1z e

e O

2pK3 2 (1 +¢.-)>| =
"TTte T+ 3e K5]

where erf (#) is the error function, or probability integral:

6 2
-u
erf(0)=\-/—i— j‘e du

0
2
_ 2e 0 o] A3P7g Ale
Ao (8)=exp\ T |"-F)] |"h(1-e2 P\ 2

"~

A,w 3
1 c 0
[l + 2 (0"')] + e—_p(lp. e)3 exp (Aﬂ [' --i—]) -

2

= A AW

2p K490 2T 2 -
————f,_: exp( > ) [1 +—-—2(0-t)] +K6]

where
-2e
Al T e
1 - 3e
Ay " T e

Since we do not have the switching function, k, as an explicit function
of 8, some iterative method is needed to find the first 0 at which k crosses
from negative to positive values. Simply using two points and a slope to find
a parabola for extrapolation works quite well. Writing k as:

k—-f—x-)“*rw»h(’-kf’ A
“"m\ 4 D r D 7
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and
A
; 2,
. de
',; we find
d A A da Rzesine
dk _ ¢ { 4 6 6 6 ]
d® mD L 4468 r d8 P J
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